
 
 
 
 

How Long is One Inch? 

 
 Someone who measures the length of an object typically 
does so by holding the object up to a ruler and reading the 
length from the ruler.  If the length of the object matches 
the one inch length on the ruler, then, the object is one 
inch long.  What can be more obvious than this? 

 

 Saying exactly how long one inch is, however, may not be 

as easy as it seems.  The problem with specifying the exact 

length of one inch has to do with the nature of boundaries.  

If someone holds up a ruler to a sheet of paper, where is the 

correct place to begin measuring?  Does a one inch long 

object span the distance between the inner boundaries of the 

one inch markers?  Or, is it more correct to measure from the 

middle of one inch marker to the middle of the other?  Or, 

instead, is either correct, provided that the beginning lies 

somewhere on one boundary and the ending lies somewhere on 

the other boundary?   

 

 Why does specifying exactly where to begin and end 

measuring not seem to be a problem?  The reason is that we 

often treat the boundary lines on the ruler as defining an 

imaginary line that has no width.  Thus, the border area 

between one inch and two inches on a ruler is conceived as 

having no width, so that the question of where to begin and 

end measuring simply does not arise. 
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 The tradition of treating a boundary line as having no 

width is as old as Euclid's definition of a line as "a 

breadthless length."  If a line is "breadthless,"  i.e. has 

no width, and a boundary is a line, then surely it is correct 

to treat the boundary as a line with no width. 

 

 Treating a boundary line as one with no width works 

quite well in some cases.  It works well in cases when the 

boundary line is so thin relative to what it is a boundary of 

that no purpose would be served by treating the boundary line 

as having width.  For example, a piece of rope that separates 

two tracts of land may be so thin relative to the size of the 

land that no purpose would be served by trying to specify the 

boundary more precisely.  Even if there is a small portion of 

land that lies directly on this boundary, this portion is so 

small that it can be treated as nonexistent for the purposes 

of dividing the two tracts of land. 

  

 The case may be different when what lies on the boundary 

becomes important, or when the boundary line is large 

relative to the size of the area whose boundary is marked.  

If gold lies on the boundary line between two properties, it 

may become important to try to specify for each portion of 

the gold whose land it lies on.  Another example is the 
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center line on the highway.  This line is significant in size 

relative to the width of the road.  The center line is a 

dividing line between the two sides of highway that doesn't 

belong to either side.  This center line may only be several 

inches wide, but it is an example of a boundary line with 

width.  A doorway between two rooms provides a similar 

example of a boundary that has width. 

 

 Does it ever matter exactly where we should begin 

measuring the length of one inch, one foot, one meter, or any 

other length?  Often it doesn't matter, so where's the 

problem?  One problem is that mathematics is supposed to be a 

model of certainty and precision, so that showing that there 

is an element of uncertainty and imprecision in our most 

fundamental methods of measuring is disquieting.  If we are 

unable to specify the exact length of our most fundamental 

unit of measurement, this introduces an element of 

inexactness in all measurements that depend on that unit. 

 

 Since the idea that there is no problem with the 

boundaries of measurement depends on the belief that a 

boundary marks an imaginary line with no width, let us 

examine this belief.  Children are taught in geometry class 

that mathematics is about imaginary and ideal objects, not 

about real, physical objects.  A square object is a square if 
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it closely approximates the dimensions of the "ideal square," 

even if it is not exactly square.  It is only natural, then, 

to extend this idea to boundary lines, and to treat 

boundaries as lines with no width.  Lines have only one 

dimension, length, and they mark an invisible "ideal line" 

that has no width, even if the physical lines themselves have 

a narrow width. 

 

 How does this work in practice?  When we divide a circle 

into two equal parts by drawing a diameter from one side to 

another, what about the area that lies on the dividing line? 

 Which side of the circle does this area belong to?  For that 

matter, does the diameter end at the beginning of the 

circular line, the middle of it, or the end?  Does the area 

of a circle include the area of the line that defines the 

circle, or is the area simply the area inside the circle?  

None of these questions arise if we treat a line as having no 

width.  Yet, they all arise if we recognize a line as having 

width. 

 

 Does it make sense to treat lines as having width?  To 

answer this question, let us look at the function of 

measurement.  To measure an object is typically to find out 

how many units it contains, where the unit is some unit of 

length, volume, or other unit of measurement.  When someone 
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is baking a cake, for example, that person wants to know how 

many cups of flour to put into the cake.  Likewise, 

quantities are important in commerce.  A customer who buys a 

gallon of milk wants to know that he is getting one gallon, 

not some percentage of a gallon.  One function of 

measurement, then, is to specify quantities for practical 

matters such as recipes, and to insure that people get the 

advertised quantities of products. 

 

 If we treat lines as having no width, this may have no 

practical impact in some situations.  If someone wishes to 

divide a piece of cake into two equal slices, he or she may 

simply mark a line in the middle and physically divide the 

cake by cutting along the line.  This act of division forces 

all particles into one side or the other, and creates two 

pieces of cake where formerly there was one.  Of course, some 

"crumbs" may result which are the particles of cake that 

don't stick to one piece or the other; these are the 

byproducts of the division process.   

 

 When the quantities are not being physically divided but 

only divided by a line, as in the border between two towns, 

the width of the line may make a difference.  In some cases, 

where the border is disputed, a no-man's-land may be 

specified to mark an area between two provinces or countries 
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that belongs to neither one.  And in mathematical examples, 

theoretical problems arise in specifying the exact border or 

boundary of geometrical objects.  It is reasonable to wonder, 

for example, whether the area of a circle includes only the 

area within the circle, or whether it includes the border of 

the circle as well.  This is especially true since the area 

of a circle is, by conventional mathematics, specified by an 

irrational number, so that clarifying exactly what the 

reference of the expression "area of a circle" is might shed 

some light on our inability to specify this area with 

rational numbers. 

 

 Whether a line has width depends on what me mean by 

"line."  Adolf Grunbaum comments on this issue. Speaking in 

context of a discussion of Cantor's set theory, he says: 

 No clear meaning can be assigned to the "division" of a 

line unless we specify whether we understand by "line" 

an entity like a sensed "continuous" chalk mark on the 

blackboard or the very differently continuous line of 

Cantor's theory.  The "continuity" of the sensed linear 
expanse consists essentially in its failure to exhibit 

visually noticeable gaps as the eye scans it from one of 

its extremities to the other.  There are no distinct 

elements in the sensed "continuum" of which the seen 
line can be said to be a structured aggregate. 



 

 
 
 7

 

 

 

 Does the idea that a line has no width make sense?  Of 

course, it is possible to treat a line as having no width for 

the purposes of measurement.  But it is not possible to draw 

a line with no width.  A line with no width is no line at 

all.  Any line, no matter how thin, has some width.  The 

width of a line is parallel to the duration of a unit of 

time.  It is not possible to specify any period of time that 

does not have duration.  One hour, one minute, one second, 

one millisecond, and one nanosecond all have some duration.  

It is simply not possible to specify a unit of time that has 

no duration.  Likewise, it is not possible to specify a line 

that has no width, however small that width may be. 

 

 Doesn't saying that a line must have width depend on 

confusing the width of an actual physical line with the width 

of the ideal line it stands for?  While treating a dividing 

line or boundary as standing for an invisible "ideal line" 

may work satisfactorily in some situations, it isn't always 

satisfactory.  It isn't satisfactory in some cases because 

when it is physically impossible to separate two quantities, 

treating a line as marking an ideal though invisible line 

between two quantities doesn't say which quantity the matter 
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that lies on the dividing line belongs to.  No matter how 

thin the line is, there will always be some material that 

lies on the line, just as the diameter or the edge of a 

circle occupies some area.  The idea that a line has no width 

is a mathematical fiction that simply ignores the fact that 

boundaries by their very nature take up space. 

 

  

 How did the idea that boundaries have only one dimension 

become so deeply ingrained in our thinking?  The answer lies 

in the way we mathematically conceive of points and lines.  

In mathematics, a point is conceived of as having only the 

attribute of location; it does not take up space.  Likewise, 

a line is conceived of as made up of infinitely many of these 

no-dimensional points.  If a point has no area or width, then 

surely a line that is made up of these no-dimensional points 

will have no width.  Yet, this conception ignores a basic 

mathematical fact: a large number, or even an infinite 

number, of points that have no area do not acquire the 

property of area.  Multiplying zero infinitely many times by 

itself still equals zero.  Hence, it is a mistake to conceive 

of a line as being made up of infinitely many points; 

instead, a line should be conceived of as a quantity that 

represents the distance between points.  The definition of a 

circle as "a set of points equidistant from a fixed point" 
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ignores this mathematical fact.  If points have no area, then 

infinitely many of them don't have area either. 

 

 Adolf Grunbaum addresses the question whether a line 

that is made up of unextended points can be said to have a 

length.  According to Grunbaum, it is perfectly consistent to 

maintain that a line is made up of unextended points and that 

the line has length.  Grunbaum introduces the subject as 

follows: 

 It is a commonplace in the analytic geometry of physical 

space-time that an extended straight line segment, 

having positive length, is treated as "consisting of" 

unextended points, each of which has zero length.  

Analogously, time intervals of positive duration are 

resolved into instants, each of which has zero duration. 

 Grunbaum invokes Zeno in explaining the difficulty in 

reconciling line segments made up of unextended points with 

the idea that these line segments have length: 

 Zeno invokes two basic axioms in his mathematical 

paradoxes of plurality.  Having divided all magnitudes 

into positive and "dimensionless" magnitudes, Zeno 

assumed that: 

 1) The sum of an infinite number of equal positive 

magnitudes of arbitrary smallness must necessarily be 

infinite 
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 2) The sum of any finite or infinite number of 

"dimensionless" magnitudes must necessarily be zero 

 ... Zeno himself is presumed to have used these axioms 

as a basis for the following dilemma: If a line segment 

is resolved into an aggregate of infinitely many like 

elements, then two and only two cases are possible.  

Either these elements are of equal positive length and 

the aggregate of them is of infinite length (by Axiom 1) 

or the elements are of zero length and then their 

aggregate is necessarily of zero length (by Axiom 2). 

 

 Treating a point as having no area also generates 

mathematical paradoxes, such as Zeno's paradox.  The idea 

that motion is impossible because between any two points it 

is possible to insert another point is plausible only if one 

treats location as being specifiable by a mathematical point. 

 If my location is specifiable by a mathematical point with 

no area, then, since it is always possible to insert a 

mathematical point between two other mathematical points, it 

is possible to generate an argument that it is impossible for 

me to move from point A to point B.  Once it is recognized 

that when someone's location is specified, some unit of 

measurement must be given, and this unit of measurement 

specifies some portion of space, however small, the 

paradoxical nature of the argument disappears.  It disappears 
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because there will always be a finite number of units of 

length between two locations, whether these units are inches, 

feet, meters, miles, or any other unit of measurement.  If 

two objects are six inches apart, one might argue that the 

first object must move three inches, then four and one half 

inches, then five and one quarter inches, etc.  But the 

argument eventually breaks down because, at some point, 

moving another mathematically possible distance won't count 

as a move at all because the move will be too small to be 

captured by the selected unit of measurement.  Moving from 5 

999/1000 to 5 9995/10000 won't count as a move if the unit of 

measurement is in inches, since both of these positions will 

be so close to six inches that they will count as being at 

six inches.  Zeno's paradox is generated by changing the 

units of measurement each time to make them more precise to 

infinity.  Zeno's argument doesn't work if the units of 

measurement are specified ahead of time. 

 

 The problem is parallel to adding one drop of milk to 

one gallon of milk.  If the unit of measurement is in 

gallons, adding or taking away a drop of milk won't make the 

measurement greater than or less than one gallon, even though 

the actual physical quantity is different.  The reason is 

that the unit of measurement isn't precise enough to capture 

the difference the addition of one drop to a gallon of milk 
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makes.  If one is measuring milk in drops, this unit would be 

precise enough to capture the difference.  It would not be 

precise enough, however, to capture the addition of 1/1000th 

of a drop. 

 

 How does this reasoning apply to the question "How long 

is one inch?"  In order to specify precisely the length that 

one inch takes up, we need to specify the exact width of the 

boundary.  Once it is recognized that boundaries have width, 

and this width is specified, then the difference between two 

objects that differ in length by a quantity that is less than 

the specified width of the boundary is parallel to the 

difference between two gallons of milk, one of which has one 

more drop than the other.  The difference will be too small 

to be captured by the precision of the chosen unit of 

measurement.  In order to capture this difference, it is 

necessary to introduce a more fine-grained unit of 

measurement.  Likewise, if I say "It took me fifteen minutes 

to take out the laundry," my statement wouldn't be falsified 

if it had taken me fifteen minutes and one second.  As long 

as the unit of measurement is in minutes, 15 minutes, one 

second, and 15 minutes, two seconds, will both count as 

fifteen minutes.  To capture the difference between the two 

cases, it would be necessary to use seconds, not minutes, as 

the unit of measurement. 
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 How long, then, is one inch?  Once the width of the 

boundary line demarcating inches is specified, then any 

length whose border lies on the boundary line will equal one 

inch.  This means that two objects can have different 

lengths, yet both be one inch long.  In order to capture the 

difference in lengths, it would be necessary to introduce a 

narrower boundary line.   

 

 The question about the area of a circle seems more 

unclear.  Possibly, we should distinguish "the area within a 

circle," which does not include the boundary line, from "the 

area of a circle," which does include it.  The diameter of a 

circle, then, would end anywhere on the boundary of the 

circle.   

 

 What would be the implications for geometry of accepting 

the idea that lines have width?  It would mean giving up the 

fiction that it is possible to draw a line dividing two areas 

that is infinitely small, or that has no width.  It may also 

mean that we may need to develop a new geometry of boundaries 

and borders, based on the idea that boundaries and borders 

have width, however small that width may be. 

 

     Jesse Yoder 
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